La mécanique quantique comme théorie statistique
Imprimer ce billetIl est couramment reconnu que la mécanique quantique est une théorie probabiliste ne permettant pas de prédire des événements individuels, mais s’attachant plutôt à donner des probabilités d’apparition de chaque type d’événement. En ce sens, la mécanique quantique est plutôt une théorie statistique qu’une théorie déterministe.
L’article suivant « The statistical origin of quantum mechanics » enfonce le clou et va plus loin.
Tout d’abord, l’auteur définit trois types de théories :
- type 1 : les théories déterministes. Un événement est complètement décrit par les lois déterministes et la connaissance des conditions initiales. L’exemple type est la mécanique classique.
- type 2 : les lois sont déterministes mais les conditions initiales sont inconnues. Les prédictions de ces théories portent sur un ensemble d’individus. L’exemple type est la mécanique statistique
- type 3 : il n’y a plus ni lois déterministes, ni conditions initiales connues. Nous allons voir que ce type de théories comprend la théorie quantique (même si l’équation de Schrödinger est déterministe, elle ne porte pas pour autant sur des événements individuels)
L’auteur commence avec un ensemble de deux équations différentielles (lois déterministes) d’un système classique à une dimension.
où
Les observables du système, que sont la position et l’impulsion , sont ensuite remplacées par les valeurs moyennes de variables aléatoires ayant chacune une loi de probabilité inconnue. Les équations obtenues forment une théorie non déterministe puisque les lois ne s’appliquent plus à des événements individuels mais à des ensembles statistiques.
L’auteur appelle cet ensemble d’équations les conditions statistiques. Ces équations définissent une infinité de théories possibles. Pour restreindre le champ des théories possibles, une loi de conservation locale des probabilités est supposée. Avec cette loi de conservation et les conditions statistiques, l’auteur retrouve des caractéristiques propres à la théorie quantique comme la représentation de l’impulsion sous forme d’opérateur hermitique et la relation entre les densités de probabilité dans l’espace de configuration et celles dans l’espace des impulsions (équ. 20).
En passant, l’auteur trouve une condition de classicalité des théories sous la forme d’une condition d’indépendance de dans la densité de probabilité de la position , étant une fonction obtenue après transformation des conditions statistiques. Il montre ainsi que les théories de type 1 et 2 sont classiques et que les théories de type 3 sont non classiques dans le sens où dépend de . Par ailleurs, cette dépendance ne peut pas être décrite par des concepts de théories déterministes sous forme d’« interaction » (on pense ici à l’intrication quantique).
L’équation de conservation de probabilité et la deuxième condition statistique conduisent aux parties réelles et imaginaires respectivement de l’équation de Schrödinger.
La loi de conservation de l’énergie découle habituellement des équations (via le theorème de Noether). Ici, puisque les lois ne s’appliquent plus à des événements individuels, elle doit être posée comme condition statistique : « La moyenne statistique de la variable aléatoire énergie est indépendante du temps ». L’auteur montre ensuite que la mécanique quantique est la seule théorie statistique qui vérifie cette condition supplémentaire.