Emergence de la mécanique quantique
Imprimer ce billetSur le même sujet que le précédent billet, voici un article récent de C. Wetterich qui montre comment la mécanique quantique peut émerger de la statistique classique. La présentation est plus ardue que pour l’article de Klein, mais semble aussi plus complète.
Après une première lecture, je note que Wetterich retrouve la plupart des lois de la mécanique quantique à partir du concept d’observable probabiliste : le principe d’incertitude de Heisenberg, la superposition des états quantiques, les interférences, les caractéristiques de l’intrication quantique, l’apparition de la fonction d’onde, les états purs et impurs, l’équation de Schrödinger et même la décohérence.
Pour le moment, je n’ai pas encore tout saisi donc je ne dirai rien de plus précis sur ce papier et surtout pas s’il y a un lien entre ce papier et celui de Klein. Je dois un peu plus étudier cet article avant d’être capable de le dire.
Cependant, une phrase de la conclusion me surprend tout de même :
it is well known that classical statistics can be obtained as limiting case of quantum mechanics
Pour moi, ça ne me semble pas si évident. On connaît en effet en mécanique quantique la limite semi-classique qui consiste à faire tendre la constante de Planck vers 0, mais cela ne suffit pas à retrouver la physique classique. Si la physique classique pouvait se déduire de la physique quantique, on comprendrait certainement mieux cette dernière. Il semble ajouter cette phrase pour éviter d’entrer dans le débat des interprétations de la mécanique quantique uniquement, bien que tout l’article essaie de montrer que la mécanique quantique pourrait se comprendre comme une théorie statistique classique.
Quoiqu’il en soit, cet article mérite d’être approfondi et notamment deux références antérieures du même auteur qui sont des exemples explicites de la relation entre statistique et mécanique quantique :